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1. I n t r o d u c t i o n .  

1.1.  O v e r v i e w .  

The Aquarius project [1] has, as the fundamental  goal of its research, to establish the princi- 
ples by which very large improvements in performance can be achieved in machines specialized 
for calculating difficult problems in design automation,  expert systems, and signal processing. 
These problems are characterized by having substantial numeric and symbolic components.  We 
are commit ted to the eventual design of a very high performance heterogeneous MIMD multipro- 
cessor tailored to the execution of both numeric and logic calculations. Aquarius began in 1983. 
By 1985 we had completed and demonstrated the Aquarius I system [15] which was a small 
heterogeneous multiprocessor. Aquarius I achieved about an order of magnitude higher perfor- 
mance than had been achieved up to tha t  time. For  example, the Japanese Fifth Generation 
Computer  'PSI '  had achieved 30 KLIPS in 1985. We are currently focusing on an experimental 
multiprocessor architecture (Aquarius II) for the high performance execution of Prolog that  will 
contain 12 processors specialized for Prolog and others for a total  of 16 processors. 

1.2. R e s e a r c h  M e t h o d o l o g y  

It is worth stating at the outset a number of key concepts which reflect our fundamental  
methodology for doing research in high performance knowledge processing systems. We believe in 
a research environment where systems evolve, taking advantage of contributions from a number 
of sources, both within and outside Berkeley. 

Second, we believe that  issues should be dealt with as quickly and inexpensively as possible: 
by gadanken experiments, if possible, else analyzing, else simulation, else emulation and finally, 
only if required, by constructing and analyzing machines. 

Third,  the nature of the high performance execution demands the effective utilization of 
enormous amounts of memory, coupled both loosely and tightly, it involves exploiting parallelism 
at both course and fine grain granularities, and it necessitates modularization of the system archi- 
tecture to accommodate improvements in any element in the structure.  

Fourth,  we are interested in proving concepts, rather  than engineering manufactured parts. 
Thus, we are interested in building experimental architectures which can then be transferred to 
sites more appropriate than us for fabrication to achieve higher performance and more reliable 
systems. We are interested in using as many standard components and buses as possible in the 
experimental machine. This will facilitate the rapid transfer of the architecture technology. 

Fifth, we believe in working closely with government and industry. Government  provides 
the basic support; we, at the University, provide the research ideas and industry provides the 
hardware. We are primarily supported by DARPA* and the Cahfornia MICRO program. Our 

*Sponsored by Defense Advanced Reseaareh Projects Agency (DoD), Arpa Order No. 4871, Monitored by Space 
& Naval Warfare Systems Command under Contract No. N00039-84-C-0089. 
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current industrial partners include DEC, NCR, ESL, Xenologic, Apollo, Mentor, Valid, Bellcore, 
and CSELT. 

Finally, we believe in careful instrumentation for the purpose of measuring what we have 
done. This means simulating before we build hardware, and including test apparatus in the 
microcode and in the hardware to measure the executing system. 

1.3 .  W h a t  W e  H a v e  D o n e .  

Our work has involved the studies, simulation, emulation, design and construction of two 
experimental processors especially capable of executing Prolog (the PLM and the VLSI/PLM).  We 
are in the process of designing a third (the P P P )  and a fourth (the SIMU engine). We have done 
theoretical work in unification. We have writ ten a Prolog compiler, a static data  dependency 
analyzer and semi-intelligent backtracking system. We have written large application programs 
in Prolog specifically design tools to aid in construction of our experimental engines. 

1.4.  O u r  c u r r e n t  r e s e a r c h .  

The current focus of our research is in three basic areas, as explained below. All three are 
concerned with maximizing concurrency by exploiting key ideas in various aspects of computer 
systems architecture. 

1 .4 .1 .  E v o l u t i o n  o f  A q u a r i u s  II. 

First, we are reducing our PLM processor into a single chip Prolog at tached processor for 
Aquarius II, a heterogeneous MIMD multiprocessor capable of executing concurrently applications 
with substantial logic and numeric components. This system will be an experimental evolution of 
Aquarius I, and as such, it will reflect the evolution of ideas which began with the PLM. The first 
step is the reduction of the PLM processor to a single chip. This is almost complete, and will be 
incorporated into a host computer  system for evaluation. The next processor chip, the P P P  will 
be the basic processing element for Aquarius II. It is currently under design. 

1 .4 .2 .  I m p r o v e d  M i c r o a r c h l t e c t u r e s .  

Second, we are investigating the viability of new ideas in microarchitecture and new 
mechanisms for implementing Prolog with a concurrent model of execution. We believe it is still 
the case that  we have yet  to exploit concurrency at this level of the computat ion hierarchy. This 
work will contain both theoretical and experimental components. We plan to microprogram exist- 
ing hardware as well as design special purpose functional units tha t  will run concurrently. We are 
investigating various schemes for translation, interpretation and compilation of Prolog Code, to 
support  this approach. 

1.4 .3 .  T h e  Knowledge Processing E n v i r o n m e n t .  

Third, we are continuing our research in developing an environment for knowledge process- 
ing. We have had demonstrated success in several aspects of that  process already; for example, 
our theoretical work in unification, our Prolog compiler, our static data dependency analysis 
(SDDA) work, and our work on the ASP Silicon compiler. Finally, we are currently preparing a 
substantial suite of large Prolog benchmark programs to provide a more meaningful metric than 
current benchmark sets. 

1.5.  O r g a n i z a t i o n  o f  t h i s  r e p o r t .  

The body of this report  is organized in eight sections, each describing one of the key 
research problems we are currently working on. In section 2, we discuss our current efforts in the 
completion of a VLSI single chip Prolog processor. In section 3, we describe the extension of that  
chip to handle parallel processing of Prolog by replication of the basic Prolog processor. In sec- 
tion 4, we introduce another parallel processing model, the multiple functional unit  approach. In 
section 5, we describe the research we are undertaking that  is expected to pay dividends in 
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synchronization of the full heterogeneous MIMD model. In section 6, we discuss our theoretical 
research in Unification. In section 7, we describe HPS, a new model of execution targeted for high 
performance microarchitectures.  Finally, in section 8 we discuss the ASP compiler, a silicon com- 
piler wri t ten entirely in Prolog. In section 9, we offer a few concluding remarks.  

2. C M O S  C h i p  for  t h e  P L M .  

The design of the V L S I / P L M  processor and its successor the P P P  chip is one of the key pro- 
jects in Aquarius. The objectives of the design are to achieve a cycle t ime tha t  is the same as 
tha t  of the T T L  design **, to mainta in  compatibi l i ty  with the T T L  design at  the microstate  level, 
and to make the design modular  so tha t  some of the modules can be modified and the resulting 
chip can be used in a multiprocessor system. The performance objective of the chip presented a 
number  of challenges. Firs t  of all the logic in more than  300 LSI and MSI chips occupying two 
hex size boards had to be put  in a single chip. The next challenge is to achieve the 100 ns cycle 
time. The compat ibi l i ty  requirement  of the chip with the T T L  version means tha t  at  least 8 
buses are needed in the da ta  pa th  to support  6 simultaneous register transfers and communicat ing 
address and da ta  to memory.  Additional buses are needed to avoid bus conflicts in da ta  transfers 
if every block in the data  pa th  is not connected to each of the buses. Note  tha t  if each block is 
connected to every bus then the load capacitance on the bus will be high and it will increase bus 
transfer  t ime. We have designed a chip, the VLSI /PLM,  tha t  meets the above objectives. 

2.1 .  T h e  D a t a  P a t h .  

The VLSI chip has three major  units: da ta  path,  microsequencer, and R O M  (containing 
microcode). The data  pa th  is the largest unit in the chip containing 20 blocks. I t  contains the 
special registers of the PLM in a register file, an ALU, counters of the PLM, and t empora ry  regis- 
ters for operands and results. The data  pa th  also has storage space for the top 16 entries of the 
pushdown list (PDL) and constants,  hardware for PDL overflow and underflow detection, and 
hardware for detecting collisions between various segments of the data  memory .  

The design of the da ta  pa th  presented several challenges because of the 100 ns cycle time. 
The critical pa th  involves reading operands from a register file, performing an ADD operat ion in 
the ALU and storing the result in a register. This involves designing a register file with a read 
access t ime of 30 ns or less, an ALU with a 40ns ADD time, and buses with a delay t ime of 5 as. 
These constraints  are based on the use of a two phase clock with a 10 ns nonoverlap t ime and 
tha t  a ma x i m um  of 10 ns are needed to communicate  the control point  values. We have designed 
an A.LU with parallel carry calculation circuit tha t  has a worst  case ( VDD -~ 4.2 V and Tem- 
perature  ~ 80 degrees Celsius) add t ime of 36 ns. The 28-bit counters in the da ta  pa th  have to 
increment  or decrement  and transfer the contents of the counter in 70 ns or less. The other  t ime 
critical issue is the detection of PDL overflow or underflow in less than  30 ns after  receiving con- 
trol signals. The detection of PDL overflow or underflow has to be performed before phase 0 goes 
low since the calculation of the next microaddress is completed by this time. 

2.2 .  T h e  M i c r o s e q u e n c e r .  

The microsequencer supplies the address of the next microinstruction to be executed. Its 
organization is similar to the T T L  version of the PLM. It  supports  one level of microsubroutine 
and one level of interrupt.  Two nine bi t  registers, microreturn pointer  (urp) and control microre- 
turn  pointer  (curp) are included in it to store return addresses. Fas t  microbranching is supported 
by part i t ioning the R O M  into four pages and using logic to modify the two most  significant bits 
(page bits) of the next  microaddress seed. The micro page select (upage select) logic modifies the 
page bits according to the current  s tatus and directives from the microinstruction.  

The next microaddress is selected from different sources according to the current  s ta tus  and 
directives from the microinstructiou in the micro program counter  select (uPCselect) circuit. The 

**The PLM processor was constructed with about 300 TTL chips. 
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potential  sources for the next microaddress are: modified next address seed, new opcode, argl 
register, subroutine rom, microreturn register (urp), and control microreturn register (curp). Both 
upage_select and uPCselect circuits have been designed using the tree-height reduction method 
proposed by Kuck [16] 

2.3. T h e  R O M .  

One of our goals is to design the ROM with a read access time of 40 ns. The NCR design 
team supplied the ROM as a macrocell. The ROM is organized as a NOR array with 128 rows 
and 640 columns. The 640 columns are divided into 160 groups with 4 columns in each group 
corresponding to the four pages. The least significant seven bits of the ROM address specify the 
row to be read. The most significant two bits specify the column. 

The ROM uses a precharge scheme to reduce the read time. The reading takes place during 
phase 1 and the values of the 160 bits are supplied to the microinstruction register (MIR). The 
values of nine bits at the end of a word in the ROM are also supplied to output  pad drivers for 
communicating them to the cacheboard. 

2.4 .  M i c r o c o d e  G e n e r a t i o n .  

The microcode for the chip is generated from the microstate flow charts. The microcode is 
stored in the ROM. Almost 400 locations in the ROM are used up for the PLM instructions and 
initializing the chip. The remaining 112 locations are used for exception and interrupt  handlers, 
microdiagnostics, and builtin functions. 

The microinstructions are 160 bits long in the chip compared to 144 in the TTL  version of 
PLM. This is because the number of buses in the chip and the implementation of PDL are 
different from the T T L  version. There are also additional blocks in the chip to handle heap/s tack 
and stack/ trai l  collisions. The chip also has additonal circuits for testing. 

2.5 .  S i m u l a t i o n .  

The chip has been a complex one to design because of the 100 ns cycle time and the number 
of simultaneous data transfers that  must be done in a cycle. We used functional simulation to 
verify the data  transfers between the blocks in the chip and the computat ion of next microin- 
struction address. The timing simulation has been done with estimated capacitances to determine 
the delay through the blocks. The timing information is used in redesigning the blocks to achieve 
the lOOns cycle time. 

The simulation efforts used a "s tar t  small" approach. Each block in the data  path and 
microsequencer is functionally simulated by applying all possible values for the control inputs 
coming from microengine (MIR). The functional simulation of the ALU is carried out using two 
programs. All the functions of the ALU are exercised by using a given operand for the A and B 
inputs of the ALU in the first program. The add and subtract  operations of the ALU are per- 
formed for a set of patterns by the second program. Exhaustive functional simulation of the 
MDR and Regfile blocks could not be done because of the large number of control inputs from 
MIR (20 to MDR and 16 to Regfile). 

We are simulating the entire chip for functional correctness and timing. A set of programs 
written in C supply pat terns to the pads from benchmark programs. Another  set of C programs 
generate pat terns for the units in the chip based on the patterns supplied to the pads. 

3. T h e  P a r a l l e l  P r o l o g  P r o c e s s o r  

Many schemes have been proposed for executing Prolog in parallel on a multiprocessor, but  
all seem inadequate as candidates for a realizable parallel Prolog system. Almost all parallel exe- 
cution models for Prolog have been designed without a vision of an underlying architecture, mak- 
ing them ill-suited for practical implementation. Typical  features of these models include the 
creation of huge numbers of processes and a refusal to consider the costs associated with multipro- 
cessing. 
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Parallel  execution models do exist tha t  are suitable for implementat ion,  but  these are 
discouragingly weak and inflexible in their use of concurrency. Typical  features of these models 
include the utilization of only one type of parallelism and forcing the user to compute  all solutions 
to a problem. 

Another  problem with the state of current research in parallel execution models for Prolog is 
tha t  simulation results are extremely scarce. Researchers unders tand how to implement  AND and 
OR parallelism, for example,  but  the costs and benefits associated with them have yet  to be meas- 
ured. 

We intend to build a high performance computer  suitable for executing parallel Prolog pro- 
grams: the Aquarius multiprocessor. Because of the aforementioned deficiencies of the execution 
models for parallel Prolog currently being considered by the research communi ty ,  we believe tha t  
none of them are adequate for our needs. Instead, we are constructing a new execution model for 
Prolog: the Parallel  Prolog Processor model. The P P P  model a t t empt s  to combine the power of 
the more abs t rac t  models with a concern for the cost /benefi t  tradeoffs inherent in any realizable 
multiprocessor sys tem tha t  these models lack. We intend to simulate the P P P  very carefully, in 
an a t t e m p t  to understand the merits of the various types of concurrency recoverable from Prolog, 
and to unders tand the architectural  issues involved in supporting them. 

The P P P  model is expected to support  AND parallelism, OR parallelism, the overlapped 
product ion and consumption of variable bindings from Prolog goals, and intelligent backtracking.  
The consistency check problem of AND parallelism is avoided by using static da ta  dependency 
analysis to guarantee tha t  AND processes never bind shared variables. The multiple binding 
problem of OR parallelism is solved using the "hash window" technique, first suggested by War-  
ren. The support  for intelligent backtracking is basically an extension of the work of J. H. Chang 
to a parallel execution environment,  in which static da ta  dependency analysis is used to pass addi- 
tional information to an intelligent compiler. 

In summary ,  we believe tha t  present parallel execution models for Prolog are inadequate, 
because they were not designed with computer  architecture in mind or because they are not 
powerful and flexible enough. We are designing a new model for the Aquarius multiprocessor sys- 
tem, which we hope will address both  these issues. We also hope tha t  detailed simulation will 
begin to address the lack of experimental  results of parallel execution models for Prolog. I t  is 
expected tha t  the P P P  model will be implemented in the P P P  processor currently under design. 

4. A M u l t l f u n c t l o n a l  U n i t  A p p r o a c h  t o  P a r a l l e l i s m .  

There are several forms of parallelism in Prolog. Another  project  we are working on 
exploits unification parallelism and also overlaps some book-keeping operations with unification. 
Measurements  on benchmarks  run on the Berkeley PLM indicate tha t  from 4 0 ~  to 6 0 ~  of the 
total  execution t ime is spent  on unification and another  2 0 ~  is spent on book-keeping. This 
means tha t  even if we reduced the unification t ime and book-keeping t ime to zero we would be 
limited by a factor  of 5 speedup. However, we expect to get a speedup of between two and three. 

The architecture consists of a control unit which sequentially dispatches unification opera- 
tions, one per a rgument  of the clause head, to unification units. The unification units may also 
load arguments  and also dereference arguments  for escapes. The unifications are dynamical ly 
scheduled since the t ime required for unifications is indeterminate  at compile time. Static 
scheduling would have reduced hardware utilization and effective parallelism. 

Paral lel  unification requires synchronized access to unbound variables which may  also be 
accessed by other  unification units. While static da ta  dependency analysis can be used to order 
execution of unifications, this provides a worst  case schedule which does not exploit as much 
parallelism as could be exploited with dynamic scheduling and the hardware synchronization 
mechanism provided by our architecture. The hardware complexity is not unduly increased since, 
unlike unbound variables shared by two subgoals (AND parallelism), unbound variables  shared 
within a clause head may be bound in any order, irrespective of the order of appearance of the 
arguments  in the clause head. Simple hardware locks are provided by means of a set of 
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dereference locks and write-once registers. 

Access to heap and trail pointers are also synchronized. In addition the control unit per- 
forms choicepoint and trail buffering in order to reduce memory traffic. In our initial simulations 
we provide for up to four unification units. We feel tha t  more units will not  be useful because 
most prolog clause heads do not contain a large number of arguments and additional units will 
cause contention for the memory and a shared "distribution bus" which interconnects the control 
unit with all the unification units. Most of the available parallelism would be achievable with two 
unification units. A prefetch unit prefetches and buffers instructions for the control unit. 

5. Fast  Synchronizat ion for Shared-Memory Multlprocessors 

Our research here focuses on fast synchronization among the processors of a shared-memory 
system, in particular the Aquarius multiprocessor system. We have identified major subtopics in 
this domain, analyzed mechanisms proposed in the literature, and devised what  we suggest are 
promising innovations. We are now evaluating the speedup potential  of these options for the 
Aquarius memory system. Our performance evaluation uses stochastic modeling and simulation, 
and we are currently developing a stochastic model for this purpose. More specifically, our 
analysis of the issues, along with the innovations that  we have proposed, may be summarized as 
follows. 

5.1. Busy-Wait  Locking, Waiting,  Unlocking 

The issues in broadcast synchronization schemes for caches have been analyzed, and new 
methods for busy-wait locking, waiting, and unlocking are introduced. The lock/unlock scheme 
allows busy-wait locking and unlocking to occur in zero time, eliminating the need for test-and- 
set; while the wait scheme eliminates all unsuccessful retries from the switch, and allows a process 
to work while busy-waiting. These methods for busy-wait locking, waiting, and unlocking also 
integrate processor atomic read-modify-write instructions and programmer/compiler implementa- 
tions of atomic, busy-wait-synchronized operations under the same mechanism, and improve the 
performance of both approaches to atomic operations. 

5.2. Sleep-Wait and Servlce-Request Queuing (for High-Content lon A t o m i c  O p e r a -  
t i ons )  

Fast  queuing operations on priority queues, including the sleep-wait operations P and V, can 
be executed by VLSI hardware, whose structure, function, and management  have been proposed. 
This introduces a paradigm for VLSI implementation of high-contention atomic read-modify-write 
operations. The paradigm will virtually eliminate switch traffic in the execution of such opera- 
tions, as well as speed up the operations themselves tremendously. 

8. Parallel  Unification Scheduling in Prolog. 

Unification is the fundamental  operation in Prolog. Measurements have indicated that  some 
Prolog interpreters spend over 5 0 ~  of their time performing unifications [15] and data from the 
PLM simulator indicate similar results. Thus, in looking for areas in which Prolog execution 
speed may be increased, unification is a prime candidate. 

Since the current motivation of the Aquarius project is to design a processor to exploit all 
available parallelism in a Prolog program, the approach taken here to speeding up unification is to 
exploit inherent parallelism. Unfortunately,  there is a well-known result stating that ,  in the worst 
case, no parallel algorithm for unification exists which is substantially bet ter  than the best sequen- 
tial algorithm[14], so the approach currently being taken is to divide unifications (particularly 
Prolog head unifications) into smaller tasks, then identify those tasks which may be safely per- 
formed in parallel. The tasks chosen map directly onto the unification instructions of the PLM 
instruction set. The safety criterion is twofold: first, two unification operations may not be 
unified simultaneously if they refer to the same memory location. Second, a structure argument 
may not  be unified before the structure's functor. 
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In order to determine which operations may be safely executed in parallel, a static analysis 
of the Prolog program is performed before it is compiled. The analysis is a refined version of J-H 
Chang's static data-dependency analysis (SDDA) technique[12]. The result of the analysis is an 
estimate, for each procedure in the Prolog program, of the coupling relationships between the 
arguments to the procedure as it is called, and an estimate of the structure of any of the non- 
atomic arguments, along with estimates of the coupling relationships between arguments of those 
structures. Since a procedure may be called in several different ways, the estimate (or e n t r y  
m o d e )  is a worst-case generalization of all possible entry modes. 

In order to improve the worst-case generalizations, the Prolog program is automatically 
transformed so that  each procedure may be called in at most one way. If a procedure in the origi- 
nal is called in two ways, for example, from two different calling sites, a copy is made of the 
called procedure, and one calling site will call the original procedure while the other site will call 
the copy of the procedure. In this way, exact, rather than worst-case, information exists for each 
procedure, and bet ter  schedules can be generated. 

Once data-dependency information has been derived, the unification operations are 
scheduled. There are three basic principles in scheduling. First, all operations in a parallel 
unification step must complete before the next  step can begin. Second, no two operations in a 
scheduling step may reference variables which are coupled to each other. Third,  no structure 
arguments may be unified before the functor of the structure is unified. If one operation in a 
parallel unification step fails, the entire unification is considered to have failed. Since generating 
an optimal unification schedule can be shown to be NP-complete,  any of a number of good heuris- 
tic algorithms may be used[13]. 

After  a schedule is generated, parallel unification instructions may be generated. These 
unification instructions perform the work of several sequential PLM instructions. Each unification 
operation is dispatched to one of an array of homogeneous unification processors. When all of the 
processors complete their unifications, the next parallel instruction is executed. 

Work on this project will involve construction of a data-dependency analyzer and procedure 
splitter, a scheduler, and a parallel unification simulator. Once these are constructed, da ta  will be 
gathered from a number of benchmarks to determine the amount  of available parallelism in 
unification and the speedup to be gained from employing parallel unification. An analyzer has 
been constructed which does not perform structure analysis (this will be added shortly) and design 
has been completed on the scheduler. Prel iminary data derived from the analyzer indicates tha t  
there is at least a parallelism of approximately 2:1 in most head unifications when structure infor- 
mation is not incorporated in the analysis, and that  this parallelism should increase when struc- 
ture analysis is added. This indicates tha t  the speed of unification may be at least doubled. 

7. H P S ,  A N e w  M i e r o a r c h i t e c t u r e .  

Our research in high performance computing involves exploiting concurrency at all levels of 
implementation.  At  the microarchitecture level, this work has resulted in a new model of execu- 
tion, restricted data  flow, which we believe has great potential  for implementing very high perfor- 
mance computing engines for both numeric and symbolic computations. We are calling our 
microengine HPS, which stands for High Performance Substrate, to emphasize the notion tha t  this 
model should be useful for implementing very dissimilar ISA architectures. 

Our model of the microengine is a r e s t r i c t i o n  on classical fine granularity data  flow. It is 
not unlike tha t  of Dennis [4], Arvind [5], and others, but  with some very impor tant  differences, as 
discussed in [6]. The most important  distinction is that,  unlike classical data  flow machines, only 
a small subset of the entire program is in the HPS microengine at any one time. We define the 
a c t i v e  w i n d o w  as the set of ISP instructions whose corresponding data  flow nodes are currently 
part  of the data  flow graph which is resident in the microengine. As the active window moves 
through the dynamic instruction stream, HPS executes the entire program. 
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7.1. T h e  Importance  of  Local Parallel ism 

I t  is impor tan t  to emphasize the importance of local parallelism to our choice of execution 
model. Indeed, we chose this restricted form of da ta  flow specifically because our studies have 
shown tha t  the parallelism available in typical  sequential control flow instruction s t reams is highly 
localized. We argue that ,  by restricting the active instruction window, we can exploit almost  all 
of the inherent parallelism in the program while incurring very little of the synchronization costs 
which would be needed to keep the entire program around as a to ta l  da ta  flow graph. 

7.2. Potent ia l  Limitat ions  of  Other Approaches .  

We believe tha t  an essential ingredient of high performance computing is the effective utili- 
zation of a lot of concurrency. Thus we see a potential  l imitat ion in microengines tha t  are limited 
to one operat ion per cycle. Similarly, we see a potential  l imitat ion in a microengine tha t  underu- 
tilizes its bandwidth to either instruction memory  or data  memory.  Finally, al though we appreci- 
a t e  the advantages  of static scheduling, we see a potential  l imitation in a microengine tha t  pur- 
ports to execute a substantial  number  of operations each cycle, but  must  rely on a non-run-t ime 
scheduler for determining what  to do next. 

7.3. Our Approach  

7.3.1. The  Three  Tier Model .  

We believe tha t  irregular parallelism in a program exists both locally and globally. Our 
mechanism exploits the local parallelism, but  disregards global parallelism. Our  belief is tha t  the 
execution of an algori thm should be handled in three tiers. At  the top, where global parallelism 
can be best identified, the execution model should utilize large granulari ty da ta  flow, much like 
the proposal of the CEDAR project [7]. In the middle, where forty years of collected experience 
in computer  processing can be exploited probably without  harm, classical sequential control flow 
should be the model. At  the bot tom,  where we want  to exploit local parallelism, fine granulari ty 
da ta  flow is recommended.  Our three tier model reflects our conception tha t  the top level should 
be algori thm oriented, the middle level sequential control flow ISP architecture oriented, and the 
bo t tom level microengine oriented. 

7.3.2. Stalls, Bandwidth ,  and Concurrency 

We believe tha t  a high performance computing engine should exhibit a number  of charac- 
teristics. First, all its components  must  be kept  busy. There must  be few stalls, both in the flow 
of information (i.e., the pa th  to memory,  loading of registers, etc.) and in the processing of infor- 
mat ion (i.e., the functional units). Second, there must  be a high degree of concurrency available, 
such as multiple paths to memory,  multiple processing elements, and some form of pipelining, for 
example. 

In our view, the restricted data  flow model, with its out-of-order execution capabili ty,  best 
enables the above two requirements, as follows: The center of our model is the set of node tables, 
where operations await  their operands. Instruction memory  feeds the microengine at a constant 
rate with few stalls. Da t a  memory and I /O  supply and extract  da ta  at  constant  rates with few 
stalls. Funct ional  units are kept  busy by nodes that  can fire. Somewhere in this system, there 
has to be "slack." The slack is in the nodes waiting in the node tables. Since nodes can execute 
out-of-order, there is no blocking due to unavailable data.  Decoded instructions add nodes to the 
node tables and executed nodes remove them. The node tables tend to grow in the presence of 
da ta  dependencies, and shrink as these dependencies become fewer. Meanwhile, our prel iminary 
measurements  support ,  the multiple components of the microengine are kept  busy. 

7.4. T h e  H P S  Model  of  Execut ion  

An abst rac t  view of HPS is as follows: Instructions are prefetched from a static instruction 
s t ream via the use of a branch predictor into the dynamic instruction s t ream, as shown at  the top 
of the figure. F rom there, instructions are fetched according to the fetch control unit  described 
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below, decoded, and presented for merging. 

This discussion implies that  the instruction stream is taken from a sequential control flow 
ISP architecture. This is not a necessary part of the HPS specification. In fact, the HPSm model 
directly processes multinode words (i.e., the nodes of a directed graph), which are produced as the 
target  code of a (for example) C compiler [8], while an HPS implementation of the VAX would 
process sequential control flow native mode VAX instruction stream. What  is necessary is that,  
for each instruction, the output  of the decoder which is presented to the Merger for handling by 
HPS is a data  flow graph. 

A very important  part  of the specification of HPS is the notion of the active instruction win- 
dow. Unlike classical data flow machines, it is not the case that  the data flow graph for the entire 
program is in the machine at one time. We define the active window as the set of ISP instruc- 
tions whose corresponding data  flow nodes are currently being worked on in the data  flow 
microengine. 

.As the instruction window moves through the dynamic instruction stream, HPS executes 
the entire instruction stream. Parallelism which exists within the window is fully exploited by 
the microengine. This parallelism is limited in scope; ergo, the term "restricted data  flow." 

The Merger takes the data  flow graph corresponding to each ISP instruction and, using a 
generalized Tomasulo algorithm to resolve any existing data dependencies, merges it into the 
entire data  flow graph for the active window. Each node of the data  flow graph is shipped to one 
of the node tables where it remains until  it is ready to fire. 

When all operands for a data  flow node are ready, the data  flow node fires by transmitt ing 
the node to the appropriate functional unit. The functional unit (an ALU, memory,  or I /O dev- 
ice) executes the node and distributes the result, if any, to those locations where it is needed for 
subsequent processing: the node tables, the Merger (for resolving subsequent dependencies) and 
the Fetch Control Unit  (for bringing new instructions into the active window). When all the data 
flow nodes for a particular instruction have been executed, the instruction is said to have exe- 
cuted. An instruction is retired from the active window when it has executed and all the 
instructions before it have retired. All side effects to memory are taken care of when an 
instruction retires from the active window. This is essential for the correct handling of precise 
interrupts [9]. 

The instruction fetching and decoding units maintain the degree of parallelism in the node 
tables by bringing new instructions into the active window, which results in new data  flow nodes 
being merged into the data  flow node tables. The branch predictor is very impor tant  to this 
scheme, since (unlike the piecewise data  flow model of Requa and McGraw [10], for example) we 
allow out-of-order execution to take place across branch boundaries. 
Current  Work and Concluding Remarks 

Our current  research is taking HPS along four very different tracks, as we a t tempt  to under- 
stand the limits of this microarchitecture. One major track, particularly relevant  to Aquarius, is 
our study of the potential  of HPS for implementing a a Prolog processor. 

In this work, we are addressing several issues that  are particularly relevant  to the HPS 
model of execution. For example, if HPS is to implement a sequential control based ISP architec- 
ture, then there are decoding issues, including the question of a node cache, which need to be 
decided. Second, t IPS requires a data  path that  (1) has high bandwidth and (2) allows the pro- 
cessing of very irregular parallel data. These two objectives usually suggest contradictory designs. 
Third,  HPS needs a scheduler which can determine, in real-time, which nodes are firable and 
which are not. Fourth,  the out-of-order execution of nodes requires additional at tent ion to the 
design of the memory system, the instruction ret irement and repair mechanisms, and the I /O sys- 
tem. These issues are discussed in [11]. 
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8. Advanced  Silicon Compiler  In Prolog .  

The purpose of the Advanced Silicon compiler in Prolog (ASP) project  is twofold. We 
wanted a sys tem tha t  would rapidly generate good microprocessor designs as a tool for the archi- 
tectural  research being pursued by the Aquarius project.  We also wanted to understand the 
benefits and liabilities of using Prolog for large software systems in general and CAD in particu- 
lar. 

8.1. Decompos i t ion  of  the Silicon Compi lat ion Problem.  

A full behavior-to-silicon compiler is a complex undertaking; as computer  scientists, we 
sought a t ractable  decomposition of the problem. Following Gajski,  we decompose the silicon 
compilation problem into three abst ract  problem domains, ordered more or less hierarchically. 

The top level of our system is the behavioral  domain. This level generates a set of logical 
devices, controlled by a finite state machine, from an input specification wri t ten in Prolog. The 
devices (and the finite state machine) are generated with performance and area constrained. Both 
s tandard compiler techniques and hardware-specific knowledge are used in this process. 

The second level is the circuit or functional domain. The purpose of this domain is to 
present the programs of the behavioral  domain with an abst ract  class of idealized devices. Hence, 
this level a t t empts  to synthesize, place, and route the finite state machine and logical devices gen- 
erated by the behavioral  level into a sticks-and-stones description of the circuit. This level encom- 
passes the tradit ional  tasks of state assignment, logic synthesis, transistor sizing, place and route, 
module generation and layout.  Currently,  the core of this level is in place with our Topolog 
Module Generator .  

The third level is the geometric or s tructural  domain. The purpose of this domain is to 
present the programs of the functional domain with an abst ract  class of idealized elements, or a 
sticks-and-stones virtual-grid abstract ion of the actual  mask layers involved in fabricatable 
design. This domain encompasses the tradit ional tasks of compaction,  river routing, and device- 
level simulation. These tasks are accomplished by the Sticks-Pack component  of ASP. 

Clearly there is some interaction between the levels. No layout  generator can ignore the con- 
straints  inherent in technology, such as, for example, the richer connectivity of one level of metal. 
Similarly, the machine generator must  set reasonable constraints on the performance or area of a 
given logical device; demanding a 1-ns 32-bit A_LU will not produce such a device. 

Interfaces are entirely procedural; lower levels are regarded as providers of information and 
services to the next level above. 

8.2.  S t a t u s  o f  A S P  

ASP is not yet  complete. We have demonstra ted the generation of a da ta  pa th  somewhat  
simpler than  tha t  of the PLM. We expect to automatical ly  generate the complete VLSI /PLM 
Processor design within the next two years. 

9. Conclusions 

The Aquarius project  is less than half completed, yet  a number  of interesting results have 
been obtained and several interesting systems have been demonstra ted (see also [17-47]). We have 
freely distr ibuted to other research groups some of our tools and systems such as our Prolog Com- 
piler and PLM Simulator. Several of our systems have been improved by our industrial partners 
and are either offered or will be soon offered to the public. 

In summary  we believe we have made major  contributions with our on-going research. We 
face a series of difficult research issues, but  have launched a multilevel a t tack  to get these issues 
resolved. The central, top-level, issue still remains: How to achieve a large improvement  in com- 
puter  system performance through concurrent execution. 
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